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Թեզի վերնագիրը

Հայերենով` Պատկերի վերակառուցում խորը ուսուցման մեթոդներով,

Ռուսերենով` Восстановление изображений с использованием методов

глубокого обучения,

Անգլերենով` Image inpainting using deep learning methods

Համառոտագիր

Վերջերս խորը ուսուցման մեթոդները մեծ հաջողությունների են

հասել պատկերի վերակառուցման խնդրում: Այնուամենայնիվ, բարդ

կառուցվածքների անընդհատ վերակառուցումը մնում է պատկերների

մշակման ոլորտի համար դժվար խնդիր: Այս աշխատանքում

ներկայացված է «onion convolution»-ների ընտանիքը, որի գաղափարն

առաջանում է, երբ դիտարկում ենք «patch-based» և «attention-based»

մեթոդների միջև կապերը։ «Onion convolution»-ները նեյրոնային ցանցերի

մեջ օգտագործվող բլոկներ են, որոնք նախատեսված են լրացնելու նկարի

անհայտ տիրույթը իտերատիվ եղանակով։ Դրանք թույլ են տալիս

անընդհատ տարածել կառուցվածքներն ու տեքստուրաները հայտնի

տիրույթից դեպի բացակայող տիրույթ՝ վերջնական արդյունքը

համապատասխանեցնելով պատկերների բարձրորակ վերակառուցման

մարդկային չափանիշներին։ Ինչպես ցույց են տալիս որակական և

քանակական համեմատությունները, «onion convolution»-ներ օգտագործող

մեր մեթոդը գերազանցում է ժամանակակից գոյություն ունեցող

մեթոդներին` տալով ավելի իրական թվացող, աչքի համար հաճելի և

բովանդադկության առումով իմաստալից արդյունքներ:



Abstract

Recently deep learning methods have achieved great success in image

inpainting problem. However, reconstructing continuities of complex

structures with non-stationary textures remains a challenging task for

computer vision.

In this paper the family of onion convolutions is presented, the concept

of which arises from a connection between patch-based techniques

and attention mechanisms.

The onion convolutions are building blocks designed for the iterative

completion of the missing region from its boundary to the center.

It allows to continuously propagate structures and textures from the

known region to the missing one and meet human criteria on

high-quality image completions.

As qualitative and quantitative comparisons show, our method with

onion convolutions outperforms state-of-the-art methods by producing

more realistic, visually plausible and semantically coherent results.
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Figure 1: Image inpainting results of our method. Each vertical triplet of images is composed of the original image,
the image with the missing region, and the inpainted result. The method allows users to remove unwanted objects or
fill missing parts in images. Please see in color.

1 Introduction

Image inpainting is the process of completing missing or damaged regions in images resulting in a realistic,
visually plausible, and semantically meaningful output. It can be utilized in many applications such as
recovering spots or other damaged parts in images, removing unwanted objects or parts of them (see Fig.
1).

Understanding the human perception of high quality image restoration, perhaps, is the first step to any
solution of the image inpainting problem. In fact, different image restoration experts may have different
understandings of the visual plausibility of image completion. However, after consulting with some of them,
the following general and intuitive criteria on image inpainting quality were obtained.

• The completed region must have a semantically correct logic, i.e. the generated objects or their parts
must be logically possible.

• The structures in the image should preserve continuities after the inpainting is done, i.e. lines and
curves in the known region must be continued to the generated region.

• The textures in the generated region should be visually realistic and coherent with the textures in the
known region.

Some traditional approaches (Efros and Leung, 1999; Wei and Levoy, 2000; Harrison, 2001; Ashikhmin,
2001; Efros and Freeman, 2001; Criminisi et al., 2003, 2004; Barnes et al., 2009) are based on texture
synthesis techniques and achieve great success in meeting the realistic-looking texture criterion. Due to their
patch-based nature, these methods also meet the criterion of preserving structural continuities in many cases.
However, for complex structures, traditional approaches rarely give reasonable outputs.

Later, some methods (Sun et al., 2005; Hung et al., 2008; Huang et al., 2014) were proposed to deal with
the cases of complex structures and achieved notable improvements. Yet, generating semantically correct
outputs remains beyond the abilities of traditional methods. Hence, deep learning techniques are proposed
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for semantic image inpainting. Early methods (Xie et al., 2012; Pathak et al., 2016; Yeh et al., 2017; Iizuka
et al., 2017) use vanilla convolutions and manage to gain semantically meaningful results for small missing
regions. However, in the case of complicated real-world images these methods introduce blur, structural
distortions, edge artifacts, and color inconsistencies.

The reason is that during the convolution operation there may be sliding windows (see Fig. 2 (d), marked
with red cross) containing missing/invalid pixels. In fact, such pixels contain misleading information that
vanilla convolutions treat as useful information. This phenomenon harms the results especially in cases of
large missing regions.

Some methods (Ren et al., 2015; Liu et al., 2018; Yu et al., 2019; Xie et al., 2019; Yi et al., 2020) introduce
special building blocks which are designed to overcome this issue by their ability to ignore the values of the
missing region. The family of onion convolutions also has such ability. This approach allows to gain a
drastic improvement over using only vanilla convolutions. Thus in order to gain high quality results in image
inpainting problem a network architecture needs to contain building blocks with the following property:

(C1) Valid/known pixels have a higher impact on the output of the block than missing ones.

Although the issue with the irrelevant/unknown information is addressed by the special blocks mentioned
above, this is still insufficient for obtaining semantically correct image completions for complicated images
with excessive content. Indeed, to obtain semantically meaningful results, it is natural to expect the image
inpainting algorithms to look at the relevant semantic information in the image while generating a certain
part of the missing region.

Experiments show that just having a large receptive field is not enough, and one needs to have building
blocks that can generate each pixel by incorporating a sufficiently large region instead of only looking at the
neighborhood of that pixel.

For having such building blocks, some approaches (Yu et al., 2018, 2019; Zheng et al., 2019; Yi et al.,
2020) adopted the self-attention mechanism (Zhang et al., 2019) for image inpainting problem.

The attention mechanism, with its ability to capture long-range pixel dependencies, enables image in-
painting algorithms to meet the criterion of semantically correct completions by so proving the necessity of
containing building blocks with the following property:

(C2) For producing the output at each pixel, the block takes into account a sufficiently large neighborhood
of the missing region.

Notwithstanding the great success of the learning-based approaches mentioned so far, all these methods
complete the missing region in a one-shot manner when all missing pixels are filled simultaneously without
any order. This sometimes may lead to structural distortions. Therefore, motivated by human image
completions, some methods (Oh et al., 2019; Li et al., 2020a) propose iteratively filling the hole from its
boundary to its center. However, at each iteration they roughly fill the boundary of the remaining missing
region with convolutional encoders, then use pixel-level attention mechanisms to refine the completions in the
boundary areas. So the outputs of these methods highly depend on the coarse estimations (obtained by the
convolutional encoders) of the missing pixels at each iteration. In some cases networks fail to progressively
make continuity-preserving coarse estimations, which leads to outputs with structure discontinuities (see
Fig. 6).

To address this problem the onion convolution layer was proposed (Navasardyan and Ohanyan, 2020)
(the conference version of this work), which iteratively fills the missing region (starting from its boundary
to the center) without any coarse estimation of the missing boundary at each step. Moreover, when filling
each boundary location only the known part of its neighborhood is incorporated for computing patch-level
similarities. This forces the feature activations to be propagated from the known region to the missing one
without any risks coming from deteriorated coarse estimations.
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Hence the onion convolution block is designed to satisfy the following condition motivated by the criterion
of preserving structure continuities:

(C3) The block continuously propagates the information (e.g. texture, structure, semantics) of the know
region to the unknown.

Later we have noticed a connection between the patch-based nature of the onion convolution and the
attention mechanisms. This connection is discussed in Section 2.4 and leads us to the family of onion con-
volutions. Being a hybrid method, the family of onion convolutions inherits the long-range pixel dependency
capturing ability from attention mechanisms and the structure and texture continuity preserving ability
from patch-based techniques. This allows us to significantly outperform our initial results with the onion
convolution layer (Navasardyan and Ohanyan, 2020) (see Section 4).

To summarize, our main contributions are the following:

• We reveal a connection between patch-based techniques and attention mechanisms, which leads us to
an extension of the concept of the onion convolution layer (Navasardyan and Ohanyan, 2020) to the
concept of the family of onion convolutions.

• Our onion convolution family is motivated by human criteria on a visually plausible image completion
and is designed to satisfy the conditions (C1),(C2) and (C3) (some results can be found in Fig. 1).

• Our solution to the image inpainting problem gains notable improvements over recent state-of-the-art
image inpainting approaches.

The structure of the further part of this work is the following: in Section 2 some existing approaches
to the image inpainting problem, the attention mechanism, and patch-based techniques are reviewed. This
is followed by Section 2.4 where we discuss the connection between patch-based techniques, and attention
mechanisms. In Section 3, a detailed description of our approach can be found. In Section 4 our experiments,
quantitative and qualitative comparisons with state-of-the-art methods, and the ablation study are presented.
In Section 5 we draw a conclusion.

2 Related Work

This section starts with a literature review on existing solutions of the image inpainting problem. Then with
a brief introduction the attention mechanism and patch-based techniques are recalled to prepare the ground
for discussing the connection between them in the next section.

2.1 Image Inpainting Approaches

The existing approaches to the image inpainting problem can be roughly divided into two groups. The first
group uses traditional computer vision techniques while the second one utilizes learning processes. In this
Subsection a brief discussion on these groups is conducted.

2.1.1 Traditional Computer Vision Methods

Historically, the image inpainting problem was proposed for image restoration, when scratches, torn parts or
text in images were needed to be removed. Some algorithms (Bertalmío et al., 2000; Bertalmio et al., 2003)
were suggested for these purposes which rely on the idea of propagating image structures from the known
region to the unknown by diffusion processes.

In (Bertalmío et al., 2000) the authors have examined the steps which image restoration experts follow
during the restoration process. They roughly divide the process into four steps. The first three, concerning
the structure propagation, are covered by their algorithm, which predicts the isophotes (lines of equal gray
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values) direction field in the missing region. Inspired by (Bertalmío et al., 2000), T. F. Chan and J. Shen
(Shen and Chan, 2002) introduce the total variation (TV) inpainting. In (Chan and Shen, 2000) the authors
set out the major drawback of (Shen and Chan, 2002): it can not recover the missing part of an object,
when its known parts are far from each other. They address this issue by taking into account the curvatures
of the isophotes resulting with the Curvature-Driven Diffusion (CDD) inpainting model. Image gradient
magnitudes and pairwise gradient angles are used in (Levin et al., 2003) to compute global image statistics
for the inpainting of non-linear structures.

All these diffusion-based methods are devised for restoring small damaged parts in images and sometimes
cause blurry results in cases when the missing regions are with large connected components. To address this
problem, a part of previous work benefits from patch-based techniques. These methods use the idea of texture
replication with patches, i.e. totally or partially replacing patches of the missing region with their matching
patches from the known region of the image. This technique allows hallucinating coherent texture background
for the missing region. To the best of our knowledge, such a patch-based technique was firstly introduced in
(Garber, 1981) for texture synthesis, but was discarded due to its infeasibility at that time. Later in (Efros
and Leung, 1999), authors apply this technique in order to sample from the conditional distribution of each
pixel given its neighborhood. Despite the effectiveness for texture propagation, the algorithm described in
(Efros and Leung, 1999) is extremely slow due to time-consuming estimations of conditional distributions
at each iteration. To address the costly computations, some methods (Wei and Levoy, 2000; Harrison,
2001; Ashikhmin, 2001) were proposed to optimize the algorithm. Also, the approximate nearest neighbor
algorithm from (Barnes et al., 2009) can be adopted and significantly speed-up the technique. However, as
in the basic algorithm, all above-mentioned optimizations complete a single pixel at a time, which can lead
some textures to “occasionally ‘slip’ into a wrong part of the search space and start growing garbage" (as
mentioned in limitations in (Efros and Leung, 1999)).

Later, to address the problem of “growing garbage", some texture synthesis algorithms suggest copying
regions with more than one pixel at a time. On the other hand, pasting patches into neighboring locations
may cause some patches to overlap, so a technique is needed to stitch together overlapping patches. In (Efros
and Freeman, 2001) authors refer to this stitching problem as image quilting and propose a method with
minimum error boundary cut. Later in (Kwatra et al., 2003) an algorithm for coherently stitching patches
was introduced using graph cut techniques (Boykov et al., 2001).

Apart from successfully hallucinating textures, patch-based methods also can recover the structure in-
formation in the missing region. However, some algorithms try to improve patch-based methods in this
direction. Criminisi et al. (2003, 2004) show that a significant improvement can be achieved by just speci-
fying the order of patch-based filling of the missing region. They assign to each pixel a priority to be filled,
and the patches with more priority in their centers are replaced with their matching patches first. Rane et
al. (Rane et al., 2003) consider the problem of missing block recovery after JPEG compression and propose
to classify whether a block is “texture" or “structure" block and fill the missing part by the algorithm from
(Efros and Leung, 1999) in the case of “texture"-block and by the algorithm from (Bertalmío et al., 2000)
in the case of “structure"-block. A similar approach was adopted also in the paper (Bertalmio et al., 2003),
but instead of classifying a missing region into texture or structure, the initial image was decomposed into
two images - texture image and structure image. After filling the missing regions in these images by corre-
sponding algorithms, the results were summed up to obtain the final result. To the best of our knowledge,
(Bertalmio et al., 2003) is the first attempt to apply patch-based inpainting techniques not on the original
image but on features obtained from the original image, and our algorithm is also in this manner.

Later, the topic of structure preserving image inpainting has been gaining more and more attention from
researchers. This motivation is based on the human perception of coherent completion of scenes. Especially,
there are some units such as planes, curves, circles, which can be missed by methods discussed so far, but are
very important for our scene understanding and visual perception. (Hung et al., 2008) extracts the edges of
the known part of the image, uses Bézier curves for edge completion, and guides an exemplar-based technique
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with completed edges. (Sun et al., 2005) requires users to provide a part of the missing structure by drawing
some important missing edges in the image and (Barnes et al., 2009) shows how to use random search to
speed up this algorithm. In (Huang et al., 2014) authors guide a patch-based technique by planar structures
present in the image. Though these methods improve the quality of inpainting complicated structures, they
are mostly either limited to some specific structures or do not take into account the semantics of the image.

For such purposes the learning-based methods were introduced.

2.1.2 Learning-Based Methods

After computer vision adopted deep learning techniques with bells and whistles, researchers started to
experiment with convolutional neural networks in the image inpainting problem. The advantage of deep
learning techniques is the ability of modeling high-level semantics of images, which could not be done before.
Early work on image inpainting with neural networks (Xie et al., 2012; Köhler et al., 2014; Ren et al., 2015)
concentrates on completing locally corrupted images, when missing regions are small but possibly cover
a big part of images. Moreover, (Xie et al., 2012) proposes an algorithm for blind inpainting (when the
missing region or damaged part of the image must be detected automatically and completed), and (Köhler
et al., 2014) has an option for it. In (Ren et al., 2015) Shepard Convolution is introduced to condition
the convolution output only on valid pixels. Later, (Liu et al., 2018) has developed this idea and obtained
state-of-the-art results.

By means of generative adversarial networks, GANs (Goodfellow et al., 2014), researchers have reached
new heights in solving computer vision tasks. The ability of GANs to generate visually plausible results
helps neural networks in the image inpainting problem to coherently hallucinate the missing region. In
(Pathak et al., 2016) authors use encoder-decoder architecture to fill large missing regions. They show the
advantage of training with adversarial loss and start a new direction for the learning-based image inpainting
algorithms. Another GAN-based method (Yeh et al., 2017) trains a GAN to fit the real data distribution,
then, at inference time, tries to fit the known region of the input by optimizing over the latent image
manifold. Later, with the aim of keeping both globally and locally consistencies of the generated missing
regions, (Iizuka et al., 2017) introduced global and local context discriminators and performs promising
results on missing regions of arbitrary forms.

Another work that is worth mentioning is (Yang et al., 2016). The authors initialize the missing region
by using the output of their coarse network, then iteratively update the values in the missing region with a
patch-based technique similar to (Li and Wand, 2016) (minimizing the distances between matching patches).
Later, (Song et al., 2018a) used the patch-based technique described in (Chen and Schmidt, 2016), which
replaces the patches in the unknown regions with their matching patches from the known regions. Similarly,
Yan et al. (2018) use a special case of this technique, by considering patches of size 1× 1 and combining
features from both encoder and decoder for computing similarities. Similar to our method, Yi et al. (2020) use
patch-level attention mechanism encapsulated in their Attention Computing Module and Attention Transfer
Module. The methods described in (Yang et al., 2016; Song et al., 2018a; Yan et al., 2018; Yi et al., 2020)
utilize patch-based techniques as we do for our family of onion convolutions, but in contrast with them,
we do not need to roughly fill the missing region to apply our patch-based technique. Moreover, despite
the usage of a parallel implementation of the technique (described in (Chen and Schmidt, 2016)), some of
their implementations remain inefficient in the case of arbitrary-formed missing regions due to unnecessary
computations, which we avoid in our implementation.

As the image inpainting problem is under-constrained, it can be solved in different visually plausible
ways. So it is natural seeking for a method with the ability to keep diversity while generating the missing
content. In (Zheng et al., 2019) authors have managed to combine variational auto-encoder, VAE (Kingma
and Welling, 2013), and GAN (Goodfellow et al., 2014) techniques for pluralistic image completion.

Some learning-based methods have also adopted structure guidance techniques. In (Nazeri et al., 2019)
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authors find edges of the incomplete image by Canny edge detector (Canny, 1986), then learn to complete
the edges (with the guidance of the incomplete image) and guide the image completion with the completed
edges. A similar approach is adopted by Xiong et al. (2019), where the authors complete foreground semantic
contours in the incomplete image. In (Song et al., 2018b) authors use a semantic segmentation network
Deeplabv3+ (Chen et al., 2018) to predict the segmentation map of the incomplete image, then (by the
guidance of the incomplete image) learn to complete it and give as a guidance for image completion.

The most above-mentioned learning-based methods use vanilla convolutions which has the drawback
of implicating irrelevant missing information in computations. To address this issue, Liu et al. (2018)
introduced the partial convolution layer, which uses only the known region in every sliding window and
updates the missing region. Despite partial convolutions achieve state-of-the-art results, they update the
missing region mask in a rule-based manner, which leads to boundary artifacts and structural discontinuities.
Later, Yu et al. (2019) introduced the gated convolution layer, which allows the network to learn the way
of mask updating and achieves state-of-the-art results. Gated convolutions have been further successfully
modified to the family of light weight gated convolutions (Yi et al., 2020), which helps the authors gain
drastic improvements in efficient high-resolution image inpainting. Thus (Liu et al., 2018; Yu et al., 2019; Yi
et al., 2020) show that distinguishing between valid and non-valid pixels is essential in the image inpainting
problem, and we also adopt a similar approach in this work.

Motivated by the human workflow of image restoration, some recent works (Oh et al., 2019; Li et al.,
2020a) fill the missing region iteratively from the boundary to the center instead of one-shot image com-
pletion. The success of these approaches shows the importance of propagating structural and textural
continuities from the known region to the missing one. However, at each iteration these methods utilize
pixel-level attention mechanisms which requires the missing boundary to be roughly filled before the pro-
cessing. In some cases when this coarse estimation of the missing boundary content fails to continue the
lines and curves, results may contain structural distortions (see Figures 5, 6, 7). In contrast with this, the
family of onion convolutions is supplied with a patch-level iterative filling process, which does not require
any coarse estimation of the missing boundaries and is designed to prevent structural discontinuities.

2.2 The Attention Mechanism

The attention mechanism, introduced by Bahdanau et al. (2015), has its widespread usage in deep learning
after the paper by Vaswani et al. (2017).

A lot of work has benefited from the long-range dependency capturing ability of the attention.
Particularly in computer vision the attention modules are utilized in such tasks as semantic segmentation

(Fu et al., 2019), image matting (Li and Lu, 2020; Li et al., 2020b), neural style transfer (Yao et al., 2019;
Park and Lee, 2019), image deblurring (Suin et al., 2020; Zamir et al., 2021), image inpainting (Yu et al.,
2018, 2019; Yi et al., 2020), etc..

Early work on adopting the self-attention to the vision tasks was (Hu et al., 2018), using channel-based
attention. In (Zhang et al., 2019) authors managed to train a GAN combined with self-attention module
for generating images. Recently, Bello et al. (2019) combined convolution operations with self-attention
mechanism and outperforms state-of-the-art image classification and object detection approaches. These and
many other works on attention use a global attention mechanism when all pixels participate in formulating
all pixels (all-to-all). This global attention mechanism is computationally expensive, so can not be applied
in low-level features of the image in neural networks. To overcome this limitation of computations, the local
attention mechanism was introduced (Gregor et al., 2015; Luong et al., 2015), where every element looks only
at its neighborhood. Ramachandran et al. (2019) built a fully attentional network for image classification and
object detection performing state-of-the-art results. In (Cordonnier et al., 2020) authors proved an elegant
theorem that claimed that every convolutional layer is a special case of a multi-head attentional layer with
a relative positional encoding.
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Now let us describe the core idea behind the attention mechanism. Let information is given by a
sequence of d-dimensional vectors V1,V2, . . . ,Vn ∈Rd . Also let a new sequence C1,C2, . . . ,Cm ∈Rd is needed to
be generated. Then, at each time step t, for generating the information which will be held in Ct , the attention
mechanism uses the whole information in V1, . . . ,Vn but with different importances. These importances are
called attention scores. In other words, for each Vi its importance value αti is somehow estimated and the
vector Ct is taken:

Ct =
n

∑
i=1

αtiVi. (1)

In order to determine the attention scores αti the attention block takes two more sequences as input, namely
the key sequence K1,K2, . . . ,Kn and the query sequence Q1,Q2, . . . ,Qm. The intuition behind the key and query
sequences is that for computing the importance of Vi in formulating Ct one can consider the similarity of
the query Qt to the key Ki. Hence, in the classical attention mechanism the attention scores are determined
in the following way:

αi j = So f tmax(K ·Qi) j, (2)

where K is the matrix with rows K1, . . . ,Kn.
Notice that the attention scores are taken in such a way, that ∑

n
i=1 αti = 1 and αti ≥ 0. It means they can

be interpreted as probabilities of taking the values V1,V2, . . . ,Vn. Moreover, obtaining Ct can be interpreted
as taking the expectation over the conditional distribution {P(Vi | t) = αti, i = 1, . . . ,n}. Another way of
determining Ct is sampling from this conditional distribution:

Ct = RandomSample({Vi}, probs = {αti}). (3)

In the case when Ct is formulated by taking the expectation of the above-mentioned distribution, the attention
mechanism is used to call deterministic or soft attention, while the version of random sampling is called
stochastic or hard attention (Xu et al., 2015).

In the case of hard attention, some weights (which participate only in formulating sampling probabilities)
can not be updated due to differentiability issues w.r.t. these variables, so Xu et al. (2015) maximize a lower
bound of the marginal log-likelihood log p(y | a) of observing the sequence of words y given image features
a. In this work, some types of onion convolutions can be interpreted as a kind of hard attention mechanism.
However, these onion convolution modules have no such weights, which participate only in formulating
sampling probabilities, so in contrast with (Xu et al., 2015) the onion convolutions do not need a trick like
REINFORCE (Williams, 1992).

2.3 Patch-Based Techniques

Image manipulation techniques formulating their outputs based on patch similarities or distances are referred
to as patch-based techniques.

Patch-based techniques are actively used in traditional computer vision algorithms for such tasks as
texture synthesis (Efros and Leung, 1999; Wei and Levoy, 2000; Ashikhmin, 2001; Efros and Freeman, 2001;
Kwatra et al., 2003), style transfer (Hertzmann et al., 2001; Efros and Freeman, 2001) and image inpainting
(Criminisi et al., 2004; Sun et al., 2005; Xu and Sun, 2010). Later deep learning approaches to these tasks have
also adopted patch-based techniques (Li and Wand, 2016; Chen and Schmidt, 2016; Yang et al., 2016; Liao
et al., 2017; Song et al., 2018a; Yan et al., 2018; Yi et al., 2020). Our method with onion convolutions is also
in this manner, where a hybrid approach of deep learning, patch-based methods, and attention mechanisms
is adopted for the image inpainting problem.

A representative of patch-based techniques is the onion-peel patch-match, based on (Efros and Leung,
1999) and introduced as the first step of the onion convolution layer in the conference version of this work
(Navasardyan and Ohanyan, 2020). The onion-peel patch-match fills the missing region M1 = M iteratively
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by filling at each step t = 1, . . . the boundary ∂Mt of the remaining missing region Mt . The filling process is
done by replacing the missing parts of the k f ×k f -sized boundary patches by their matching patches from a
known region. The detailed description of the onion-peel patch-match can be found in Section 3.

Another representative of the patch-based methods is the style-swap algorithm (Chen and Schmidt, 2016),
designed for the arbitrary style transfer task. The style-swap takes the encoded features of a style and a
content images and produces the feature of the stylized image. The final stylized image is obtained by passing
this feature to a pretrained decoder. The style-swap replaces k× k patches in the content feature with their
matching patches from the style feature and aggregates the overlapping parts by averaging. More precisely,
let C,S be the content and style images respectively, Φ(C),Φ(S) ∈ RH×W×D be their features obtained by a
convolutional encoder. The style-swap operation consists of the following steps.

• Extract the set of all k×k patches from both Φ(C) and Φ(S), denote these sets by {φi(C)}HW
i=1 , {φi(S)}HW

i=1

respectively.

• For each content patch φi(C) ∈ Rk×k×D find the most similar patch among the patches φ j(S) ∈ Rk×k×D:

φ
ss
i (C,S) = argmax φ j(S)

< φi(C),φ j(S)>
||φi(C)|| · ||φ j(S)||

. (4)

• In the content feature Φ(C) replace the patch φi(C) with the patch φ ss
i (C,S).

• Due to simultaneously replacing all patches {φi(C)}HW
i=1 with their matching patches {φ ss

i (C,S)}HW
i=1 some

pixels will have multiple replacement candidates (coming from different patches to replace). One just
needs to average the candidate pixels to get the final replacement for a certain pixel.

2.4 The Connection Between Attention Mechanisms and Patch-Based Techniques

As we have already mentioned there is a connection between the patch-based methods and attention mech-
anisms. This connection leads us to the extension of our initial concept of onion convolution (Navasardyan
and Ohanyan, 2020) to the family of onion convolutions. In this section we discuss the similarity between
the attention mechanism and two patch-based techniques, namely style-swap and onion-peel patch-match.

Both style-swap and onion-peel patch-match can be considered as types of attention mechanisms. Indeed
in the case of style-swap a kind of hard attention can be obtained if one takes

• the patch-size k = 1;

• the query sequence as normalized k× k patches (pixels, since k = 1)

Qi =
φi(C)

||φi(C)||
, i = 1,2, . . . ,HW, (5)

• the key and value sequences as

K j =Vj =
φ j(S)
||φ j(S)||

, j = 1,2, . . . ,HW, (6)

• the attention scores αi j = 1 j= j∗(i), where

j∗(i) = argmax j < Qi,K j >, (7)

and 1 is the indicator function.

This connection may lead to some modifications in both, the attention and the style-swap mechanisms.
For example, like (Yi et al., 2020), one may come with the idea for the attention mechanism to compute
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(a) (b) (c) (d)

Figure 2: Onion convolution. First we perform onion-peel patch-match in the following way: for each iteration t =
1, . . . ,T the pixels in the boundary ∂Mt of the missing region Mt are considered. (a) km× km patches, centered in the
boundary pixels (e.g. p1, p2, p3), are matched to their corresponding patches from the source region Mt (corresponding
source patches are centered in p̂1, p̂2, p̂3). (b) k f ×k f patches centered in the pixels p1, p2, p3, . . . are replaced with their
corresponding k f × k f patches centered in p̂1, p̂2, p̂3, . . .. (c) Then the overlapping parts are aggregated by averaging,
and the next missing region Mt+1 is computed. After the onion-peel patch-match, a convolution followed by updating
the remaining missing region MT is applied. (d) Some kc× kc convolution sliding windows, centered in the filled
region (1−MT ), may overlap with the missing region MT , hence their centers are also treated as non-valid pixels,
resulting in updating the remaining missing region MT 7→M′ by the Eq. 18.

patch-level similarities instead of pixel-level. Or for the style-swap instead of taking the most similar patch
take one randomly with the probabilities

So f tmax(ϕi1,ϕi2, . . . ,ϕi,HW ), ϕi j =

(
< φi(C),φ j(S)>
||φi(C)|| · ||φ j(S)||

)
. (8)

For the onion-peel patch-match the situation is similar. For each iteration t = 1,2, . . . ,T a kind of attention
mechanism can be obtained if one takes1

• the patch-size k f = 1,

• the query sequence as Qp = patchkm
X t (p) for all positions p such that Mt

p = 1,

• the key sequence as Kp̂ = patchkm
X t (p̂) for all positions p̂ such that Mt p̂ = 1,

• the value sequence as Vp̂ = X t
p̂ for all positions p̂ such that Mt p̂ = 1,

• the attention scores αpp̂ = Ppp̂.

Emphasize that depending on taking the expectation or random sampling in the onion-peel patch-match,
one will obtain the similarity either with the soft or with the hard attention mechanisms.

As we have mentioned earlier, the connection between the attention mechanism and the onion-peel patch-
match leads us to the extension of the concept of onion convolution layer (Navasardyan and Ohanyan, 2020).
This extension is obtained by considering various definitions of similarities between patches and soft or hard
versions of the attention mechanism.

Thus, being hybrid modules, our onion convolutions inherit the feature-continuity preserving property
from the patch-based technique (onion-peel patch-match) and the ability of capturing long-range pixel de-
pendencies from the attention mechanism by so satisfying both (C2) and (C3) conditions.

3 Approach

We start this section with a detailed description of the family of onion convolution modules and hold a
discussion on implementation. Then the architecture of the proposed network and the loss functions are
presented.

1For notations and other details, please, see Section 3.
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3.1 The Family of Onion Convolution Modules

Human criteria for high quality image inpainting lead some image restoration experts/artists to develop
their workflow for manual image inpainting. A study on such workflows was conducted by Bertalmio et al.
(Bertalmío et al., 2000) and summarized to the following steps for manual image inapainting2: “(1.) The
global picture determines how to fill in the gap, the purpose of inpainting being to restore the unity of the
work; (2.) The structure of the area surrounding Ω is continued into the gap, contour lines are drawn via
the prolongation of those arriving at ∂Ω; (3.) The different regions inside Ω, as defined by the contour lines,
are filled with color, matching those of ∂Ω; and (4.) The small details are painted (e.g. little white spots on
an otherwise uniformly blue sky): in other words, ‘texture’ is added".

It is worth noting that the family of onion convolutions also follows this workflow in some sense. Indeed,
at each iteration t for filling the boundary ∂Mt of the missing region the onion convolutions look at the
sufficiently large neighborhood of the hole in order to “see the global picture". The steps (2.),(3.), and (4.)
are unified and implicitly performed after, due to the patch-based nature of the onion convolutions.

The principle of the onion convolutions is illustrated in Fig. 2 and is summarized in Alg. 1. Each onion
convolution layer takes two main arguments as input: a tensor X ∈RH×W×c and a binary mask M ∈ {0,1}H×W

indicating the missing region in the tensor X (Mi j = 1 means, that the pixel Xi j ∈Rc lies in the missing region).
Each onion convolution block is composed of three stages: onion-peel patch-match, convolution, and

updating the missing region. The blocks differ from each other only at the stage of onion-peel patch-match.
Below we describe each stage in detail.

3.1.1 Onion-Peel Patch-Match

As it is crucial for the family of onion convolutions to satisfy the condition (C3), i.e. to preserve structure and
texture continuities while generating the missing region, we adopt a patch-based technique onion-peel patch-
match. The onion-peel patch-match is motivated by the patch-based texture synthesis algorithm described
in (Efros and Leung, 1999) and iteratively fills the missing region of X , initially taking X1 = X ,M1 = M. For
each iteration t = 1, . . . ,T , the boundary ∂Mt of the missing region Mt is filled, resulting in a tensor X t+1

with a missing region, indicated by Mt+1 = Mt −∂Mt . This iterative process allows gradually prolongations
of lines and curves entering the missing region by so preventing feature discontinuities. Thus at first we need
to determine the boundary ∂Mt . Since the missing region is indicated by Mt , the boundary can be obtained
by the morphological erosion operation on Mt with a window of size 3×3:

∂Mt = Mt − erode(Mt ,3). (9)

For simplicity in the further reading, we indicate the spatial locations by single index instead of double
index (for rows and columns), e.g. for the c-dimensional pixels of the tensor X t ∈ RH×W×c the notations
{X t

p | p = 1,2, . . .HW} will be used instead of the notations {X t
i j | i = 1,2, . . . ,H, j = 1,2, . . . ,W}.

For each location p in the boundary ∂Mt (i.e. for such p = 1, . . . ,HW that ∂Mt
p = 1) in order to fill the

missing pixel X t
p let us consider its conditional distribution given the known part of its km×km neighborhood,

where km ∈ N is a hyper-parameter.
More precisely, let P(X t

p | X t
p1
,X t

p2
, . . . ,X t

pn) be the conditional distribution of the unknown pixel X t
p given

the known neighboring pixels X t
p1
,X t

p2
, . . . ,X t

pn , i.e. the locations pi are all locations in the km × km-sized
neighborhood of p such that Mt

pi
= 0.

After the conditional distributions P(X t
p | X t

p1
, . . . ,X t

pn) are known for each boundary location p, one can
follow the patch-based method from (Efros and Leung, 1999) and take for X t

p a randomly generated sample
from its conditional distribution.

2here the authors denote by Ω the region to be inpainted and by ∂Ω its boundary
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Another way to estimate the missing pixel X t
p (motivated by the connection between patch-based tech-

niques and attention mechanisms) is taking the conditional expectation E[X t
p | X t

p1
, . . . ,X t

pn ]. We explore this
approach in our family of onion convolutions and provide a study in Sec. 4.

To model the distribution P(X t
p | X t

p1
, . . . ,X t

pn) one needs to determine the possible values X t
p can take.

Since the condition (C3) is expected to be satisfied by continuously propagating structural and textural
information from the known region to the unknown, it is natural to assume that the information to fill in
the pixel X t

p is present in the known part of the tensor X t . Instead of searching for this information in the
whole known part of X t we will consider a sufficiently large neighborhood of the missing region Mt :

Mt = dilate(Mt ,dil)−Mt , (10)

where the hyper-parameter dil ∈ N controls how large the neighborhood Mt can be. Experiments show that
the information of X t in the region Mt is sufficient to recover the missing information in the pixel X t

p. Hence
we may assume that the pixel X t

p may take the possible values X t
p̂, where the locations p̂ are from the known

region Mt , i.e. Mt p̂ = 1.
Thus, similar with (Efros and Leung, 1999) we consider the conditional distribution P(X t

p | X t
p1
, . . . ,X t

pn)

as a categorical distribution, where X t
p can take the values {X t

p̂ |Mt p̂ = 1} with some probabilities we denote
by Ppp̂.

In order to define the probabilities Ppp̂ let us consider the km × km (km > 1) patches centered at the
locations p and p̂, and introduce some notations. Let T ∈ RH×W×c be a tensor, k be a positive integer and
p ∈ {1,2, . . . ,HW} be a position of a pixel in T . Then by patchk

T (p) we denote the k×k patch in T centered
at p.

Motivated by the connection with attention mechanisms, for each location p, ∂Mt
p = 1 to model the

categorical distribution {Ppp̂ |Mt p̂ = 1} we compute similarities spp̂ between the known part of patchkm
X t (p)

and the patches {patchkm
X t (p̂) |Mt p̂ = 1} followed by softmax :

Ppp̂ = So f tmax({spp̂ |Mt p̂ = 1})p̂. (11)

Hence, we get higher probabilities for those X t
p̂, neighborhoods of which are more similar to the neighborhood

of X t
p.
The various ways these similarities spp̂ can be defined is discussed separately in Sec. 3.2. Now let’s assume

these similarities (hence the probabilities Ppp̂) are known. In this case, as we have already mentioned, one
can either take a random sample

X t
p = RandomSample({X t

p̂}, probs = {Ppp̂}), (12)

or take the conditional expectation

X t
p = E[X t

p | X t
p1
, . . . ,X t

pn ] = ∑
p̂,Mt

p̂=1

Ppp̂X t
p̂. (13)

In the onion convolution mechanism, a hyperparameter k f ∈ N is introduced for filling the missing parts
of k f × k f patches at once instead of filling one unknown pixel at a time.

So, after the probabilities Ppp̂ are determined the onion convolution mechanism replaces patch
k f
X t (p) by

either random sampled patch

patch
k f
X t (p) = RandomSample({patch

k f
X t (p̂)}, probs = {Ppp̂}), (14)
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or the expected patch

patch
k f
X t (p) = E[patch

k f
X t (p) | X t

p1
, . . . ,X t

pn ]

= ∑
p̂,Mt

p̂=1

Ppp̂ patch
k f
X t (p̂). (15)

Notice that if k f > 1, and the replacements of patches are done simultaneously for all boundary locations p,
the algorithm will end up with multiple candidates for missing pixels X t

p. In the onion convolution algorithm
these candidates are averaged to fill the pixels X t

p for each boundary location p (see Fig. 2 (c) as well as Alg.
1, lines 15−17).

After replacing patches centered in all boundary points a tensor X̂ t is obtained. The onion-peel patch-
match takes the tensor X t+1 for the next iteration:

X t+1 = (1−∂Mt)⊙X t +∂Mt ⊙ X̂ t . (16)

As the boundary pixels in X t+1 are filled, the missing region Mt is also updated:

Mt+1 = Mt −∂Mt . (17)

The onion-peel patch-match does this procedure for the iterations t = 1,2, . . . ,T resulting in a tensor we
denote by O.

The definition of the similarities spp̂, and taking either the expectation or random sampling from the
distributions P(X t

p | X t
p1
, . . . ,X t

pn) make the variations between the types of onion convolutions which will be
discussed later in Subsection 3.2.

3.1.2 Convolution and Updating the Missing Region

After the onion-peel patch-match is performed resulting in the tensor O, convolution with a kernel size kc×kc

is applied to the tensor O. Let’s denote the resulting tensor by C. As shown in Fig. 2 (d), some pixels in
the tensor O may remain unknown (the new missing region is indicated by MT ). So during the convolution
some kc× kc sliding windows will contain missing pixels. Hence, in the tensor C the results of convolving in
such sliding windows should be eliminated. To obtain the centers of such sliding windows, one can use the
morphological dilation operation with the kernel size kc× kc:

M′ = dilate(MT ,kc). (18)

We refer to M′ as the updated missing region after the onion convolution.
So, the result of the onion convolution, with parameters km,k f ,kc,dil is the tuple (C⊙M′,M′).

3.2 Defining the Similarities spp̂

In this Subsection, various types of onion convolutions will be discussed forming a family of onion convolu-
tions. As we have already mentioned the members of this family differs from each other by

• the ways of modeling the similarities spp̂, hence categorical distributions P(X t
p | X t

p1
, . . . ,X t

pn),

• taking either the expectation or random sampling from these distributions (in order to find the best
replacement for patch

k f
X t (p)).

Below we introduce four methods to define the similarities spp̂. The first three methods of computing
patch similarities are based on the euclidian distance between these patches.
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Algorithm 1 Onion Convolution Pseudo-Code
Require: X ∈ RH×W×c, M ∈ {0,1}H×W , T,km,k f ,kc,dil ∈ N, smpl ∈ {True,False}

1: X1← X
2: M1←M
3: for t = 1, . . . ,T −1 do
4: ∂Mt ←Mt − erode(Mt ,3) ▷ the boundary of the hole
5: Mt ← dilate(Mt ,dil)−Mt ▷ a known neighborhood of the hole
6: X̂ ← ZerosLike(X t) ▷ initializing an array of zeros with the size H×W × c
7: for p = 1, . . . ,HW such that ∂Mt

p = 1 do
8: for p̂ = 1, . . . ,HW such that Mt p̂ = 1 do
9: spp̂← Similarity(patchkm

X t (p), patchkm
X t (p̂)) ▷ see Sec. 3.1.1 for details

10: Pp← So f tmax([spp̂ |Mt p̂ = 1]) ▷ modeling the distribution for X t
p

11: if smpl then
12: patch← RandomSample({patch

k f
X t (p̂)}, probs = Pp) ▷ see Eq. 14

13: else
14: patch← Expectation({patch

k f
X t (p̂)}, probs = Pp) ▷ see Eq. 15

15: patch
k f

X̂
(p)← patch

k f

X̂
(p)+ patch ▷ patch replacement and summation

16: for p = 1, . . . ,HW such that ∂Mt
p = 1 do

17: patch
k f

X̂
(p)← patch

k f

X̂
(p)/sum(patch

k f
∂Mt (p)) ▷ aggregation with averaging

18: X t+1← (1−∂Mt)⊙X t +∂Mt ⊙ X̂
19: Mt+1←Mt −∂Mt

20: C←Conv(XT ,kc× kc) ▷ a convolution with kernel size kc
21: M′← dilate(MT ,kc) ▷ keeping only valid-window convolution results
22: Result← (C⊙M′,M′)

As it is crucial for onion convolutions to satisfy the condition (C1), for measuring the distance between
patchkm

X t (p) and patchkm
X t (p̂), we use only valid pixel positions in patchkm

X t (p). More precisely, the normalized sum
of squared distances between valid pixels in patchkm

X t (p) and corresponding pixels in patchkm
X t (p̂) is considered:

dpp̂ =
||(patchkm

X t (p)− patchkm
X t (p̂))⊙ patchkm

Mt (p)||22
sum(patchkm

Mt (p))
. (19)

3.2.1 Taking the Best Matching Patches

This approach of determining the similarities spp̂ (hence the probabilities Ppp̂) in essence is the method
initially described in the conference version of this work (Navasardyan and Ohanyan, 2020). First, we
consider the closest (in terms of the patch distance described above) patches of patchkm

X t (p) then treat these
patches as equiprobable possibilities for the patch patchkm

X t (p). More precisely, the set of the closest patches
is defined as follows:

Ω
ε(p) = {patchkm

X t (p̂) |Mt p̂ = 1,dpp̂ ≤ (1+ ε)d∗}, (20)

where d∗ is the minimal distance among all patches

d∗ = min
p̂,Mt

p̂=1
dpp̂ (21)

and ε is a hyper-parameter.
After the minimal distance d∗ is computed, one can take the similarities

spp̂ =

1 if patchkm
X t (p̂) ∈Ωε(p)

−∞ otherwise
, (22)
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hence, after applying the softmax operation, one will get

Ppp̂ =

 1
|Ωε (p)| if patchkm

X t (p̂) ∈Ωε(p)

0 otherwise
. (23)

We will shortly call this method of choosing similarities by BestMatchSim.

3.2.2 Turning Distances into Similarities by the Function f (x) =−x

One can turn the distances dpp̂ into similarities by a decreasing function. In this approach the function
f (x) =−x is chosen, and the similarities spp̂ =−dpp̂ are considered. Hence, we get

Ppp̂ = So f tmax({−dpp̂ |Mt p̂ = 1})p̂. (24)

We will shortly call this method of choosing similarities by OppositeSim.

3.2.3 Turning Distances into Similarities by the Function f (x) = 1/(1+ x)

Here is the same situation as in the previous case but for the function f (x) = 1/(1+ x), so the similarities
will be spp̂ = 1/(1+dpp̂). Hence, we get

Ppp̂ = So f tmax
({

1
1+dpp̂

|Mt p̂ = 1
})

p̂
. (25)

We will shortly call this method of choosing similarities by InverseSim.

3.2.4 Taking the Cosine Similarity

Here the most common approach for the attention modules is used. The similarities are determined by using
the cosine similarity between patches. As when computing the patch distances, here also only the valid pixel
positions in patchkm

X t (p) are used, i.e.

spp̂ =

〈
patchkm

X t (p)⊙ patchkm
Mt (p)

||patchkm
X t (p)||

,
patchkm

X t (p̂)

||patchkm
X t (p̂)||

〉
. (26)

We will shortly call this method of choosing similarities by CosSim.
In summary, we get the onion convolution family consisting of eight types of onion convolutions presented

in Table 1.

Table 1: The Family of Onion Convolutions. Each onion convolution can be obtained by choosing an appropriate
method for filling the missing pixels (i.e. taking the expectation or random sampling from the patches in the known
region) and choosing the method of defining the similarities spp̂.

Distances (BestMatchSim) −x (OppositeSim) 1/(1+ x) (InverseSim) Cosine similarities (CosSim)
ES EV-BestMatchSim EV-OppositeSim EV-InverseSim EV-CosSim
RS RS-BestMatchSim RS-OppositeSim RS-InverseSim RS-CosSim

3.3 Discussion on Implementation

As can be noticed from Alg. 1 the naive implementation of the onion convolution blocks contains 3 nested for-
loops (lines 3, 7 and 8) which makes the algorithm computationally complex and time-consuming especially
for high-resolution inputs. Since the onion-convolution layers contain cosine-similarity computations between

15



256×256 resolution 512×512 resolution

Figure 3: Inference time measurements of our method. The time computations are done on a single Nvidia Quadro
RTX 8000 GPU. As can be noticed from the graphs, even for large missing regions on 512×512 resolution the network
is still practical to use in real-world applications.

patches3, the two nested loops in lines 7 and 8 (in Alg. 1) can be parallelized using convolutional layers as
some existing works do when implementing mechanisms similar to the spatial global attention (Chen and
Schmidt, 2016; Yu et al., 2018; Yan et al., 2018; Yi et al., 2020).

In general, it is done by extracting patches

Pkm
X t (Mt) = {patchkm

X t (p) |Mt p = 1} (27)

then convolving the tensor X t with filters from Pkm
X t (Mt).

However this procedure contains dot product calculations also for pairs of patches, each of which is
centered in the region Mt . To avoid these redundant computations, we merely extract patches Pkm

X t (∂Mt)

and compute the dot products for each pair

(patchkm
X t (p), patchkm

X t (p̂)) ∈Pkm
X t (∂Mt)×Pkm

X t (Mt) (28)

while keeping the computations parallel.
Our implementation is done purely with TensorFlow (Abadi et al., 2015), resulting in an end-to-end

efficient pipeline for training and inference.
Moreover, the actual processing time of our network with onion convolutions is presented in Fig. 3 for

different sizes of the missing region and resolutions 256×256 and 512×512. From the bar-plots in Fig. 3 can
be noticed that even for large missing regions (more than 80−90% of the whole image area) the processing
time of high-resolution 512×512 images in average is quite small: less than 0.17 seconds, which makes our
approach practical for real-world use-cases.

3.4 The Network Architecture

In our method, a generative adversarial network is used, the generator of which is the main inpainting
network. As a discriminator, our approach uses the SN-PatchGAN introduced by Yu et al. (2019) and is
based on the concept of SN-GAN (Miyato et al., 2018).

The generator network consists of two parts: coarse and refinement networks. The input to the generator
is a tuple consisting of an image with zeros in its missing region and a binary mask indicating the missing
region. The coarse network produces a coarse estimation of the inpainting result, which is passed to the
refinement network to obtain the final high-quality result.

3a calculation of the euclidean distance also can be derived to calculations of dot products by the equality ||u− v||22 = ||u||22−2⟨u,v⟩+ ||v||22
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Figure 4: The architecture of our coarse network. After each convolution the corresponding activation is used. The
onion convolution layer is used with parameters km = 4,k f = 2,dil = 8,kc = 3,T = ∞, where T = ∞ means that we
iteratively complete the missing region until it is filled completely.

3.4.1 Coarse Network

Let I be an image, which is normalized to the range [−1,1], and M be a binary mask indicating the missing
region in the image. The network is fed by two inputs: I⊙ (1−M) and M. The overall architecture of our
coarse model is presented in Fig. 4. Six partial convolution layers with ELU (Clevert et al., 2015) activation
are used at the beginning of the network to reduce the tensor sizes. Let’s denote the output of the sixth
partial convolution by X and the updated mask by M′. Due to boundary artifacts the partial convolution
layer introduces, we do not consider the updated mask M′, instead, we resize the initial missing region M
to the size of X and refer to this new resized binary mask as the missing region indicator in the tensor X .
Then one of the onion convolution modules is applied with parameters km = 4,k f = 2,dil = 8,kc = 3,T = ∞,
where T = ∞ means that we continue the iterative process of the onion-peel patch-match until the missing
region is filled (see Table 2). We have experimented with the hyper-parameters, with the position of the
onion convolution module inside the network and found that this is the optimal usage of it in our case. After
the onion convolution layer, the ELU activation is used. The rest of our coarse network is composed of
convolutional layers and Nearest Neighbor Upsamplings, followed by convolutions. All convolutions, except
the last one, are followed by activation functions ELU. In the end, tanh activation is used to obtain the
output in the range [−1,1]. The detailed architecture of the coarse network can be found in Table 2.

3.4.2 Refinement Network

After passing the image and the missing region through the coarse network, we obtain a rough estimation of
pixels in the missing region. Let us denote the output of the coarse network by Ic. For getting more detailed
output, the image Icomp = Ic⊙M+I⊙(1−M) is formulated and passed through another network, which we call
a refinement network. The architecture of the refinement network is very similar to the refinement network
used by Yu et al. (2019). The only difference is using vanilla convolutions instead of gated convolutions (this
difference is discussed in our ablation study, see Section ??).

3.5 Loss Functions

Our loss function consists of three terms: pixel-wise reconstruction loss L1, adversarial loss Lad , and
perceptual loss Lp. The total loss is a weighted sum of these losses:

L = λ1L1 +λ2Lad +λ3Lp , (29)
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Table 2: Parameters of our coarse network. PConv_x denotes partial convolution layers (Liu et al., 2018). ELU
denotes the Exponential Linear Unit (Clevert et al., 2015). Conv_x is a convolution block composed of a convolution
and a non-linearity. ConvUp_x is a block composed of a nearest neighbor upsampling followed by a convolution and
a non-linearity. All paddings are of the type “same".

Layer Name Parameters
PConv_1 f ilters = 48,ksize = 5,strides = 1,activation = ELU
PConv_2 f ilters = 96,ksize = 3,strides = 2,activation = ELU
PConv_3 f ilters = 96,ksize = 3,strides = 1,activation = ELU
PConv_4 f ilters = 192,ksize = 3,strides = 2,activation = ELU
PConv_5 f ilters = 192,ksize = 3,strides = 1,activation = ELU
PConv_6 f ilters = 192,ksize = 3,strides = 1,activation = ELU

Onion_Conv
d = 8,k f = 2,km = 4,T = ∞, f ilters = 96,

kc = 3,strides = 1,activation = ELU
Conv_7 f ilters = 192,ksize = 3,strides = 2,activation = ELU
Conv_8 f ilters = 192,ksize = 3,strides = 1,activation = ELU
Conv_9 f ilters = 192,ksize = 3,strides = 1,activation = ELU

Conv_10 f ilters = 192,ksize = 3,strides = 2,activation = ELU
Conv_11 f ilters = 192,ksize = 3,strides = 1,activation = ELU
Conv_12 f ilters = 192,ksize = 3,strides = 1,activation = ELU

ConvUp_13 f ilters = 192,ksize = 3,activation = ELU
Conv_14 f ilters = 192,ksize = 3,strides = 1,activation = ELU

ConvUp_15 f ilters = 192,ksize = 3,activation = ELU
Conv_16 f ilters = 192,ksize = 3,strides = 1,activation = ELU

ConvUp_17 f ilters = 96,ksize = 3,activation = ELU
Conv_18 f ilters = 96,ksize = 3,strides = 1,activation = ELU

ConvUp_19 f ilters = 48,ksize = 3,activation = ELU
Conv_20 f ilters = 24,ksize = 3,strides = 1,activation = ELU
Conv_21 f ilters = 3,ksize = 3,strides = 1

Tanh

where λ1,λ2,λ3 are training hyperparameters. For optimizing the inpainting network G, the loss function
L is minimized w.r.t. the generator’s weights ωG. At the same time, as there is an adversarial loss, Lad , it
is maximized w.r.t. SN-PatchGAN discriminator’s weights ωD. We update ωG and ωD one after another at
each step resulting in an equilibrium point for the GAN.

Let Iorig be the image, which is needed to be reconstructed, given an image I with a missing region
indicated by a binary mask M. Let Ic and Ir be the coarse and refinement networks’ outputs, respectively.
Each of our losses is discussed below in detail.

3.5.1 Pixel-Wise Reconstruction Loss

We penalize each of our inpainting networks in all spatial locations by minimizing the mean absolute error
between the original image Iorig and reconstructions Ic and Ir (similarly as Yu et al. (2019)):

L1 = ||Ic− Iorig||1 + ||Ir− Iorig||1 . (30)

3.5.2 Adversarial Loss

Our discriminator gets the original images Iorig as real examples and composition images

Icompos = Iorig⊙ (1−M)+ Ir⊙M (31)
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as fake examples. Since the discriminator belongs to the family of PatchGAN s, it outputs 3D tensors Dreal

and D f ake. As in (Yu et al., 2019), the hinge loss between the outputs of our discriminator is computed:

Lad =−E[ReLU(1−Dreal)+ReLU(1+D f ake)] . (32)

3.5.3 Perceptual Loss

We also use the perceptual (content) loss introduced in (Gatys et al., 2016), which minimizes the distance
between the features of the original and the completed images obtained by the V GG-16 (Simonyan and
Zisserman, 2015) network. Similar to (Liu et al., 2018), we compute distances between the vgg-features of
three images: the original image Iorig, the output of the refinement network Ir, and the composition image
Icompos. More precisely, let MPi(X) be the output of the MaxPool layer in the ith block when feeding the V GG

network with an image X . Then our perceptual loss is defined as follows:

Lp =
3

∑
i=1

[
||MPi(Ir)−MPi(Iorig)||1+

||MPi(Icompos)−MPi(Iorig)||1
]
.

(33)

Thus, the total loss L is a weighted sum of above-mentioned three losses. In our experiments λ1 = 1,λ2 =

1,λ3 = 0.05 are taken.

4 Experiments

In this section we describe the settings of our experiments with onion convolution models then perform a
qualitative and a quantitative comparison with existing state-of-the-art approaches. Later a discussion on
the onion convolution types is presented followed by discussions on processing high resolution images and
error accumulation in the onion convolution module. Finally, an ablation study is done.

4.1 Implementation Details

The training experiments with onion convolution modules are performed on Places2 (Zhou et al., 2017) and
Celeba-HQ (Karras et al., 2017) datasets. All the models are trained on the image resolution 256× 256
without any augmentations, with batch size equal to 28, and using the ADAM optimizer (Kingma and Ba,
2015) with a learning rate of 10−4 and parameters β1 = 0.5, β2 = 0.999. NVIDIA V100 and NVIDIA Quadro
RTX 8000 GPUs were used for all the trainings. The training period for each experiment was from 10 to
14 days.

To evaluate our models, we have sampled 20000 images from Places2 (Zhou et al., 2017) test dataset
and 3000 samples from Celeba-HQ (Karras et al., 2017). For each image, we have created random free-form
masks as it was done in (Yu et al., 2019). The masks are in different sizes equiprobable from area ranges
covering 10−20, 20−30, 30−40, or 40−50 percents of the image area. To show the generalization ability
of our method, we evaluate it also on a test set of 3000 images randomly sampled from the Imagenet (Deng
et al., 2009) validation set.

As it was mentioned earlier, the onion convolution family consists of eight block types. A comprehensive
study on these onion convolution layers is provided in Sec. 4.3. Although they perform almost similarly (see
Table 7), we pick up the one with the highest SSIM value to compare with other state-of-the-art methods
and perform discussions in the further sections.

19



Masked PC GC HF RFR our

Figure 5: Comparisons of our method with PC (Liu et al., 2018), GC (Yu et al., 2019), HF (Yi et al., 2020) and RFR
(Li et al., 2020a). Please see in color.
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4.2 Comparison with State-of-the-Art Methods

In this subsection we compare our method with several learning-based state-of-the-art approaches: Gated
Convolutions (GC) (Yu et al., 2019), Partial Convolutions (PC) (Liu et al., 2018), HiFill (HF) (Yi et al.,
2020) and Recurrent Feature Reasoning (RFR) (Li et al., 2020a), as well as two representatives of patch-
based traditional approaches: Patch-Match (PM) (Barnes et al., 2009) and Exemplar-Based Image Inpainting
(EBII) (Criminisi et al., 2004).

For comparison on general scenes (such as Places2, Imagenet) we took the pretrained GC (Yu et al., 2019)
and RFR (Li et al., 2020a) models from their official repositories. As there is no official implementation
of the method PC (Liu et al., 2018), we made our own, which benefited a lot from https://github.

com/MathiasGruber/PConv-Keras. For HF (Yi et al., 2020) we took the TensorFlow reimplementation
from https://github.com/duxingren14/Hifill-tensorflow. The PM (Barnes et al., 2009) and EBII
(Criminisi et al., 2004) algorithms were taken from the publicly available repositories https://github.com/
vacancy/PyPatchMatch and https://github.com/igorcmoura/inpaint-object-remover respectively.

For comparison on face images we used Celeba-HQ (Karras et al., 2017) dataset and took the pretrained
GC model (Yu et al., 2019) from its official repository. The models RFR (Li et al., 2020a), HF (Yi et al., 2020)
and PC (Liu et al., 2018) were retrained on Celeba-HQ. For both qualitative (Sec. 4.2.1) and quantitative
(Sec. 4.2.2) comparisons we consider our best model in terms of SSIM, the onion convolution with cosine
similarity and random sampling, Onion-RS-CosSim (see Table 7).

4.2.1 Qualitative Comparison

Some visual results of our method and other state-of-the-arts can be found in Figures 5, 6, 7, and 8. As can
be noticed from these figures, in general scenes PC (Liu et al., 2018) reconstructs semantics, but introduces
some blur (e.g. rows 1 and 2 in Fig. 5), pattern (e.g. rows 3,4,6 in Fig. 5, columns 2,4 in Fig. 6)
or sometimes does not preserve continuous lines (e.g. columns 1,4 in Fig. 6). While often keeping high
frequencies, GC (Yu et al., 2019) sometimes introduces them excessively (e.g. rows 2,6 in Fig. 5, columns
1,5 in Fig. 7) does not keep image structures (e.g. rows 2,5 in Fig. 5, columns 1,3,4 in Fig. 6), or generates
some strange artifacts (e.g. columns 2,5 in Fig. 6, column 4 in Fig. 7). HF (Yi et al., 2020) reconstructs
semantics as well, but one can observe grey artifacts when reconstructing mask-near borders (e.g. column 2
in Fig. 6) or “copy-pasting" with low intensity (e.g. row 2 in Fig. 5). Moreover, it can be noticed that HF
sometimes fails to keep the structure continuities (e.g. row 5 in Fig. 5, columns 1,2,3 in Fig. 6). Although
RFR (Li et al., 2020a) propagates texture from the known region to the missing one (e.g. column 2 in
Fig. 6) it sometimes fails to preserve structure continuities (e.g. columns 1,3 in Fig. 6) or introduce a
non-realistic pattern (e.g. columns 1,2,3,5 in Fig. 7). The traditional approaches EBII (Criminisi et al.,
2004) and PM (Barnes et al., 2009) sometimes greatly recover the textures and structures (e.g. column 2
in Fig. 6), however fail to generate the context in complex scenes (columns 1,3,4 in Fig. 6) or large holes
(see Fig. 7). In contrast with these methods, our approach can successfully reconstruct detailed textures
without introducing strange artifacts and coherently preserve structure continuities due to its property of
feature continuity propagation. Moreover, due to its nature of iteratively filling the whole missing region
from boundary to the center, our onion convolution module has a clear advantage in inpainting large missing
regions (see Fig. 7).

Visual comparison on face images can be found in Fig. 8. As can be noticed, PC fails to generate the
missing parts of face images. Although GC completes the faces in a semantically plausible way, sometimes
it introduces distortion artifacts. RFR reconstructs face structures, however fails to generate the details
such as eyes. In contrast with these methods the onion convolution model generates semantically meaningful
face structures and details. Moreover, one can notice that our method recovers the eye color if one of the
eyes is in the known region. We hypothesize this is due to the patch-based nature of the onion convolution
operation.
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Figure 6: (a) Masked image. Comparisons of our method (h) with (b) PM (Barnes et al., 2009), (c) EBII (Criminisi
et al., 2004), (d) PC (Liu et al., 2018), (e) HF (Yi et al., 2020), (f) RFR (Li et al., 2020a), (g) GC (Yu et al., 2019).
Please see in color.
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Figure 7: (a) Masked image. Comparisons of our method (h) with (b) PM (Barnes et al., 2009), (c) EBII (Criminisi
et al., 2004), (d) PC (Liu et al., 2018), (e) HF (Yi et al., 2020), (f) RFR (Li et al., 2020a), (g) GC (Yu et al., 2019).
Please see in color.
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Figure 8: Comparisons of our method with PC (Liu et al., 2018), GC (Yu et al., 2019), HF (Yi et al., 2020) and RFR
(Li et al., 2020a) on Celeba-HQ (Karras et al., 2017) dataset. Please see in color.
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4.2.2 Quantitative Comparison

For a comprehensive comparison with other state-of-the-art methods we consider 2 image domains (general
scenes and face images) with 3 datasets (Places2 (Zhou et al., 2017), Imagenet (Deng et al., 2009), and
Celeba-HQ (Karras et al., 2017)) and evaluate the models with 5 evaluation metrics, namely PSNR, SSIM
(Zhou Wang et al., 2004), Mean Absolute Error (MAE), perceptual metric LPIPS (Zhang et al., 2018) (with
linear configuration) with AlexNet (Krizhevsky et al., 2012) and VGG (Simonyan and Zisserman, 2015), and
Fréchet inception distance (FID) (Heusel et al., 2017).

As we mentioned before, for the evaluations on Places2 and Celeba-HQ datasets we sampled 20000 and
3000 images respectively and created random free-form masks similar to (Yu et al., 2019). For the evaluation
on Imagenet, we sampled 3000 images from its validation set.

Tables 3, 4, and 5 shows the comparison results on the datasets Places2, Imagenet, and Celeba-HQ
respectively. On Places2 in terms of SSIM, MAE, and the FID score (which can measure how realistic the
generated results are) our method outperforms the other six. In terms of PSNR, our method under-performs
a bit RFR and HF, which can be due to the fact that these methods sometimes tend to provide blurry results
or introduce a pattern (a similar observation can be made for Imagenet dataset also). In terms of LPIPS,
our method under-performs GC with a negligible difference. On Imagenet dataset our method outperforms
the other six in terms of SSIM, LPIPS and FID score, whereas slightly underperforms RFR and HF in terms
of PSNR, and RFR in terms of MAE.

On face images, as can be noticed from Table 5, our method outperforms the other six in terms of all
metrics besides PSNR with a small difference.

As the onion convolution modules are designed to iteratively fill the missing region from its boundary
to the center, the models trained with these layers has an advantage to complete large missing regions
in a visually plausible manner without introducing any artifacts or color inconsistencies. To show that,
we perform an evaluation on the Imagenet testing set (with 3000 images) mentioned above and randomly
generated masks indicated large missing regions, i.e. more than 60% of the whole image area should be
filled. The results are presented in the Table 6, from which one can notice that our method outperforms the
others in terms of all the metrics besides PSNR. In terms of PSNR our method slightly underperforms PC,
the reason of which can be the blurry and patterny results of PC (see Fig. 7).

Table 3: The quantitative comparison of our method with PC (Liu et al., 2018) , GC (Yu et al., 2019) , HF (Yi et al.,
2020), RFR (Li et al., 2020a), PM (Barnes et al., 2009), and EBII (Criminisi et al., 2004) on Places2 20000 testing
dataset.

PSNR ↑ SSIM ↑ MAE ↓ LPIPS (AlexNet) ↓ LPIPS (Vgg) ↓ FID ↓
PC 19.83 0.719 0.052 0.240 0.276 24.21
GC 19.79 0.782 0.042 0.171 0.182 9.84
HF 20.32 0.775 0.043 0.192 0.202 13.18

RFR 20.67 0.741 0.049 0.178 0.249 15.83
PM 17.844 0.735 0.066 0.288 0.261 14.58
EBII 18.387 0.749 0.051 0.206 0.202 16.60

Onion-RS-CosSim 20.111 0.786 0.041 0.173 0.186 7.67

4.3 A Study on the Family of Onion Convolutions

As we have mentioned earlier, the onion convolution family members differ from each other by methods of

• modeling the categorical distribution probabilities {Ppp̂ | Mt p̂ = 1} and

• obtaining the replacement for patch
k f
X t (p) by either taking the expectation or random sampling from

the patches {patch
k f
X t (p̂) |Mt p̂ = 1} with above-mentioned probabilities.
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Table 4: The quantitative comparison of our method with PC (Liu et al., 2018) , GC (Yu et al., 2019) , HF (Yi et al.,
2020), RFR (Li et al., 2020a), PM (Barnes et al., 2009), and EBII (Criminisi et al., 2004) on Imagenet 3000 testing
dataset.

PSNR ↑ SSIM ↑ MAE ↓ LPIPS (AlexNet) ↓ LPIPS (Vgg) ↓ FID ↓
PC 19.868 0.701 0.054 0.254 0.281 50.86
GC 19.456 0.756 0.046 0.194 0.198 31.54
HF 20.261 0.763 0.043 0.205 0.207 32.88

RFR 20.761 0.767 0.04 0.189 0.201 32.46
PM 17.982 0.729 0.064 0.292 0.262 39.09
EBII 18.35 0.733 0.052 0.218 0.21 37.6

Onion-RS-CosSim 20.204 0.771 0.041 0.178 0.189 26.32

Table 5: The quantitative comparison of our method with PC (Liu et al., 2018) , GC (Yu et al., 2019) , HF (Yi et al.,
2020), RFR (Li et al., 2020a), PM (Barnes et al., 2009), and EBII (Criminisi et al., 2004) on Celeba-HQ 3000 testing
dataset.

PSNR ↑ SSIM ↑ MAE ↓ LPIPS (AlexNet) ↓ LPIPS (Vgg) ↓ FID ↓
PC 20.809 0.774 0.047 0.172 0.208 29.97
GC 24.231 0.844 0.025 0.098 0.13 6.44
HF 23.675 0.805 0.033 0.132 0.167 10.68

RFR 24.481 0.837 0.027 0.099 0.139 12.55
PM 17.653 0.752 0.069 0.266 0.269 36.58
EBII 18.531 0.761 0.049 0.215 0.217 93.60

Onion-RS-CosSim 24.193 0.851 0.024 0.091 0.12 5.39

Table 6: The quantitative comparison of our method with PC (Liu et al., 2018) , GC (Yu et al., 2019) , HF (Yi et al.,
2020), RFR (Li et al., 2020a), PM (Barnes et al., 2009), and EBII (Criminisi et al., 2004) on Imagenet 3000 testing
dataset for large (> 60% of the image area) missing regions.

PSNR ↑ SSIM ↑ MAE ↓ LPIPS (AlexNet) ↓ LPIPS (Vgg) ↓ FID ↓
PC 15.436 0.497 0.111 0.438 0.472 106.31
GC 14.436 0.517 0.112 0.388 0.404 77.99
HF 14.912 0.507 0.113 0.427 0.431 95.39

RFR 15.175 0.535 0.104 0.389 0.412 87.40
PM 13.346 0.505 0.144 0.523 0.488 76.48
EBII 13.826 0.483 0.123 0.427 0.42 98.19

Onion-RS-CosSim 15.186 0.545 0.103 0.381 0.405 67.28

By these two points eight types of onion convolutions are obtained and presented in Table 1.
As it has been discussed in Section 3, the categorical distribution probabilities are modeled by the softmax

function applied on the similarities spp̂ between patches patchkm
X t (p) and patchkm

X t (p̂). We consider four ways of
defining these similarities spp̂ and refer them shortly as mentioned in Table 1: BestMatchSim, OppositeSim,
InverseSim and CosSim.

Qualitative and quantitative comparisons of the image inpainting methods with different types of onion
convolutions can be found in Fig. 9 and Table 7 respectively.

It can be noticed from Table 7 that there is no explicit leader between the onion convolution types. The
same situation is with Fig. 9.

However, some observations can be made:

• When looking at Table 7, in comparison with CosSim, distance-based similarity choosing methods
OppositeSim and InverseSim perform better in the case of taking the expectation (EV) and perform
disadvantageous in the case of random sampling (RS).

We have a hypothesis that the reason for such observation is that cosine similarities are not sensitive
to brightness changes. This causes some patches with the same structure but different intensities to be
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treated as similar patches, which may lead to messy results in the case of taking the expected value.

• Taking the expectation (EV) performs better on textures (see Fig. 9 columns 1,2,4), whereas the
random sampling (RS) performs better on scenes with complex structures (see Fig. 9 columns 3,5).

Due to our hypothesis, the reason is that in the case of texture patches the amount of similar patches is
much more than in the case of structural patches. It causes the expected value to be a better estimator
of the missing patch in the case of inpainting textures than in the case of inpainting complex structures.

Table 7: The quantitative comparison between the members of the onion convolution family.
PSNR ↑ SSIM ↑ MAE ↓ LPIPS (AlexNet) ↓ LPIPS (Vgg) ↓

Onion-EV-BestMatchSim 19.869 0.780 0.042 0.174 0.187
Onion-EV-OppositeSim 20.216 0.781 0.041 0.174 0.187
Onion-EV-InverseSim 19.964 0.785 0.041 0.172 0.184

Onion-EV-CosSim 20.105 0.781 0.041 0.173 0.187
Onion-RS-BestMatchSim 19.806 0.784 0.042 0.172 0.184
Onion-RS-OppositeSim 20.046 0.779 0.041 0.171 0.188
Onion-RS-InverseSim 20.203 0.784 0.040 0.175 0.187

Onion-RS-CosSim 20.111 0.786 0.041 0.173 0.186

4.4 Study on Error Propagation in Onion Convolution

As we mentioned earlier the onion convoluition block was designed to satisfy the criterion of preserving
structure continuities. Based on the qualitative analyses discussed in Sec. 4.2.1 (see also Figures 5, 6, 7,
8) one can conclude that the onion convolution layer possesses an ability of preserving feature continuities.
On the other hand the iterative nature of onion-peel patch-match may cause an error propagation in the
case of large masks (i.e. large number of iterations) and introduce structure distortions in the generated
region. To study this phenomenon we consider a simple example of a straight line recovery (see Fig. ??).
As can be noticed from Fig. ??, our method is able to successfully reconstruct the discontinuity of the line
in the case of quite large regions. However in parallel with the growth of the missing region the onion-peel
patch-match should do more iterations to be able to fill the whole region. This causes an error propagation
starting from some iterations which leads to disconnections of the line in the generated part. However one
still can notice that the algorithm tries to prolong the two sides of the line due to the patch-based nature
of onion convolutions. While keeping growing the missing region, one can observe that the disconnection
between the two ends of the line is also growing. The line continuity dependency on the mask area for this
example can be found in the graph shown in Fig. 10.

A potential improvement of onion convolutions in this direction can be done by introducing some priorities
for the order of filling the patches, similarly as suggested in Criminisi et al. (2004).

5 Conclusion

We present a family of onion convolution modules for image inpainting problem. This concept is a result
of combining patch-based techniques with attention mechanisms. As a hybrid method, the family of onion
convolutions inherits the long-range pixel dependency capturing ability from the attention mechanisms and
the feature continuity preserving ability from the patch-based techniques. This allows modeling of high-level
semantics as well as propagating textures and structures from the known region to the unknown. We show
that our method outperforms existing state-of-the-art approaches of image inpainting, both quantitatively
and qualitatively. It is worth noting that our onion convolutions can be adopted to various architectures
and learning techniques.

27



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 9: (a) Masked image, (b) Onion-EV-BestMatchSim, (c) Onion-EV-OppositeSim, (d) Onion-EV-InverseSim,
(e) Onion-EV-CosSim, (f) Onion-RS-BestMatchSim (Navasardyan and Ohanyan, 2020), (g) Onion-RS-OppositeSim,
(h) Onion-RS-InverseSim, (i) Onion-RS-CosSim .
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Figure 10: Dependency of the line continuity (in terms of MAE) on the mask area.
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